Author(s): Andrew Tran, Cecilia Yijun Zhang and Chuanhai Cao
Active compounds in coffee have been reported to possess therapeutic effects in treating Parkinson’s disease (PD). PD is a neurological degenerative disorder affecting millions of people around the world and to this day, there is no known cure or effective method to prevent or delay the disease progress. The most effective drug being used to treat symptoms of PD is L-3,4-dihydroxyphenyalanine (L-DOPA). However, chronic use of L-DOPA diminishes its effectiveness as well as inducing dyskinesia. Current studies have shown that coffee consumption enhances the effects of L-DOPA and has a preventative role in both the onset and progression of PD. Coffee also has been reported to increase the plasma levels of granulocyte colony-stimulating factors (G-CSF), a protein that also possesses neuroprotective functions. G-CSF may be used in combination treatments with L-DOPA and coffee to synergize their function for treating PD. The underlying processes are not fully understood as to how coffee interacts with both L-DOPA and G-CSF in PD models. This review attempts to provide a possible mechanism for these interactions. Understanding the metabolic interactions between coffee, L-DOPA, and G-CSF may shed light on new therapeutic treatments to treat PD.